Source code for farm.modeling.tokenization

# coding=utf-8
# Copyright 2018 deepset team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import re
import numpy as np

from transformers.tokenization_bert import BertTokenizer
from transformers.tokenization_roberta import RobertaTokenizer
from transformers.tokenization_xlnet import XLNetTokenizer
from transformers.tokenization_albert import AlbertTokenizer
# from transformers.tokenization_xlm_roberta import XLMRobertaTokenizer
from farm.modeling.xlmr_tok import XLMRobertaTokenizer
from transformers.tokenization_distilbert import DistilBertTokenizer 

logger = logging.getLogger(__name__)

# Special characters used by the different tokenizers to indicate start of word / whitespace

[docs]class Tokenizer: """ Simple Wrapper for Tokenizers from the transformers package. Enables loading of different Tokenizer classes with a uniform interface. """
[docs] @classmethod def load(cls, pretrained_model_name_or_path, tokenizer_class=None, **kwargs): """ Enables loading of different Tokenizer classes with a uniform interface. Either infer the class from `pretrained_model_name_or_path` or define it manually via `tokenizer_class`. :param pretrained_model_name_or_path: The path of the saved pretrained model or its name (e.g. `bert-base-uncased`) :type pretrained_model_name_or_path: str :param tokenizer_class: (Optional) Name of the tokenizer class to load (e.g. `BertTokenizer`) :type tokenizer_class: str :param kwargs: :return: Tokenizer """ pretrained_model_name_or_path = str(pretrained_model_name_or_path) # guess tokenizer type from name if tokenizer_class is None: if "albert" in pretrained_model_name_or_path.lower(): tokenizer_class = "AlbertTokenizer" elif "xlm-roberta" in pretrained_model_name_or_path.lower(): tokenizer_class = "XLMRobertaTokenizer" elif "roberta" in pretrained_model_name_or_path.lower(): tokenizer_class = "RobertaTokenizer" elif "distilbert" in pretrained_model_name_or_path.lower(): tokenizer_class = "DistilBertTokenizer" elif "bert" in pretrained_model_name_or_path.lower(): tokenizer_class = "BertTokenizer" elif "xlnet" in pretrained_model_name_or_path.lower(): tokenizer_class = "XLNetTokenizer" else: raise ValueError(f"Could not infer tokenizer_type from name '{pretrained_model_name_or_path}'. Set arg `tokenizer_type` in Tokenizer.load() to one of: 'bert', 'roberta', 'xlnet' ")"Loading tokenizer of type '{tokenizer_class}'") # return appropriate tokenizer object if tokenizer_class == "AlbertTokenizer": ret = AlbertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) elif tokenizer_class == "XLMRobertaTokenizer": ret = XLMRobertaTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) elif tokenizer_class == "RobertaTokenizer": ret = RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) elif tokenizer_class == "DistilBertTokenizer": ret = DistilBertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) elif tokenizer_class == "BertTokenizer": ret = BertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) elif tokenizer_class == "XLNetTokenizer": ret = XLNetTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) if ret is None: raise Exception("Unable to load tokenizer") else: return ret
[docs]def tokenize_with_metadata(text, tokenizer): """ Performing tokenization while storing some important metadata for each token: * offsets: (int) Character index where the token begins in the original text * start_of_word: (bool) If the token is the start of a word. Particularly helpful for NER and QA tasks. We do this by first doing whitespace tokenization and then applying the model specific tokenizer to each "word". .. note:: We don't assume to preserve exact whitespaces in the tokens! This means: tabs, new lines, multiple whitespace etc will all resolve to a single " ". This doesn't make a difference for BERT + XLNet but it does for RoBERTa. For RoBERTa it has the positive effect of a shorter sequence length, but some information about whitespace type is lost which might be helpful for certain NLP tasks ( e.g tab for tables). :param text: Text to tokenize :type text: str :param tokenizer: Tokenizer (e.g. from Tokenizer.load()) :return: Dictionary with "tokens", "offsets" and "start_of_word" :rtype: dict """ # normalize all other whitespace characters to " " # Note: using text.split() directly would destroy the offset, # since \n\n\n would be treated similarly as a single \n text = re.sub(r"\s", " ", text) # split text into "words" (here: simple whitespace tokenizer). words = text.split(" ") word_offsets = [] cumulated = 0 for idx, word in enumerate(words): word_offsets.append(cumulated) cumulated += len(word) + 1 # 1 because we so far have whitespace tokenizer # split "words"into "subword tokens" tokens, offsets, start_of_word = _words_to_tokens( words, word_offsets, tokenizer ) tokenized = {"tokens": tokens, "offsets": offsets, "start_of_word": start_of_word} return tokenized
def _words_to_tokens(words, word_offsets, tokenizer): """ Tokenize "words" into subword tokens while keeping track of offsets and if a token is the start of a word. :param words: list of words. :type words: list :param word_offsets: Character indices where each word begins in the original text :type word_offsets: list :param tokenizer: Tokenizer (e.g. from Tokenizer.load()) :return: tokens, offsets, start_of_word """ tokens = [] token_offsets = [] start_of_word = [] for w, w_off in zip(words, word_offsets): # Get (subword) tokens of single word. # For the first word of a text: we just call the regular tokenize function. # For later words: we need to call it with add_prefix_space=True to get the same results with roberta / gpt2 tokenizer # see discussion here. if len(tokens) == 0: tokens_word = tokenizer.tokenize(w) else: try: tokens_word = tokenizer.tokenize(w, add_prefix_space=True) except TypeError: tokens_word = tokenizer.tokenize(w) # Sometimes the tokenizer returns no tokens if len(tokens_word) == 0: continue tokens += tokens_word # get global offset for each token in word + save marker for first tokens of a word first_tok = True for tok in tokens_word: token_offsets.append(w_off) # Depending on the tokenizer type special chars are added to distinguish tokens with preceeding # whitespace (=> "start of a word"). We need to get rid of these to calculate the original length of the token orig_tok = re.sub(SPECIAL_TOKENIZER_CHARS, "", tok) w_off += len(orig_tok) if first_tok: start_of_word.append(True) first_tok = False else: start_of_word.append(False) assert len(tokens) == len(token_offsets) == len(start_of_word) return tokens, token_offsets, start_of_word
[docs]def truncate_sequences(seq_a, seq_b, tokenizer, max_seq_len, truncation_strategy='longest_first', with_special_tokens=True, stride=0): """ Reduces a single sequence or a pair of sequences to a maximum sequence length. The sequences can contain tokens or any other elements (offsets, masks ...). If `with_special_tokens` is enabled, it'll remove some additional tokens to have exactly enough space for later adding special tokens (CLS, SEP etc.) Supported truncation strategies: - longest_first: (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences). Overflowing tokens only contains overflow from the first sequence. - only_first: Only truncate the first sequence. raise an error if the first sequence is shorter or equal to than num_tokens_to_remove. - only_second: Only truncate the second sequence - do_not_truncate: Does not truncate (raise an error if the input sequence is longer than max_length) :param seq_a: First sequence of tokens/offsets/... :type seq_a: list :param seq_b: Optional second sequence of tokens/offsets/... :type seq_b: None or list :param tokenizer: Tokenizer (e.g. from Tokenizer.load()) :param max_seq_len: :type max_seq_len: int :param truncation_strategy: how the sequence(s) should be truncated down. Default: "longest_first" (see above for other options). :type truncation_strategy: str :param with_special_tokens: If true, it'll remove some additional tokens to have exactly enough space for later adding special tokens (CLS, SEP etc.) :type with_special_tokens: bool :param stride: optional stride of the window during truncation :type stride: int :return: truncated seq_a, truncated seq_b, overflowing tokens """ pair = bool(seq_b is not None) len_a = len(seq_a) len_b = len(seq_b) if pair else 0 num_special_tokens = tokenizer.num_added_tokens(pair=pair) if with_special_tokens else 0 total_len = len_a + len_b + num_special_tokens overflowing_tokens = [] if max_seq_len and total_len > max_seq_len: seq_a, seq_b, overflowing_tokens = tokenizer.truncate_sequences(seq_a, pair_ids=seq_b, num_tokens_to_remove=total_len - max_seq_len, truncation_strategy=truncation_strategy, stride=stride) return (seq_a, seq_b, overflowing_tokens)
[docs]def insert_at_special_tokens_pos(seq, special_tokens_mask, insert_element): """ Adds elements to a sequence at the positions that align with special tokens. This is useful for expanding label ids or masks, so that they align with corresponding tokens (incl. the special tokens) Example: .. code-block:: python # Tokens: ["CLS", "some", "words","SEP"] >>> special_tokens_mask = [1,0,0,1] >>> lm_label_ids = [12,200] >>> insert_at_special_tokens_pos(lm_label_ids, special_tokens_mask, insert_element=-1) [-1, 12, 200, -1] :param seq: List where you want to insert new elements :type seq: list :param special_tokens_mask: list with "1" for positions of special chars :type special_tokens_mask: list :param insert_element: the value you want to insert :return: list """ new_seq = seq.copy() special_tokens_indices = np.where(np.array(special_tokens_mask) == 1)[0] for idx in special_tokens_indices: new_seq.insert(idx, insert_element) return new_seq